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ABSTRACT 

Many analyses of microwave background experiments neglect the correlation of noise 

in different kequency or polarization channels. We show that these correlations can lead 

to severe misinterpretation of an experiment. In particular, correlated noise arising from 

either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood 

function for a given experiment varies with noise correlation, using both simple analytic 

models and actual data. For a typical medium angle experiment, noise correlations at the 

level of 1% of the overall noise can seriously reduce the significance of a given detection. 
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1. Introduction 

The last few years have witnessed a surge of experiments measuring anisotropies in the 

cosmic microwave background. The existence of such anisotropies is now firmly established; s 
measurements are becoming plentiful enough to compare different cosmological theories 

quantitatively. A useful interpretation of a given experiment relies on proper treatment of 

atmospheric and instrumental noise. This Letter focuses on one possible pitfall in analyzing 

experimental results: noise in different channels of an experiment may be correlated. This 

correlated noise may mimic a cosmological signal on the sky and significantly alter the 

interpretation of an anisotropy measurement. 

In brief, all present anisotropy experiments use similar observing strategies. Typically, 

an experiment measures the deviation of the microwave background temperature from its 

mean value; this deviation is the temperature anisotropy. Measurements are usually taken 

at several different frequencies and sometimes at different polarizations for a total of Nd 

measurements at a given point on the sky. This set of measurements is then repeated in 

N v patches on the sky. 

The analysis of this type of experiment requires the correlation function, which in- 

cludes the expected contribution to the signal kom cosmological sources, instrumental 

and atmospheric noise, and foreground sources. In the present work, we ignore the last 

contribution; foreground sources are considered in detail elsewhere (Brandt et uZ. 1993; 

Dodelson and Stebbins, 1993; Dodelson and Kosowsky, 1994). The correlation function 

and the data determine the likelihood function (see, e.g. Readhead et al, 1989; Bond et 

al. 1991), the probability of obtaining the data given a particular theory and the noise 

parameters. Explicitly, the likelihood function is given by 

& =5 (w-N’2 &i(Ej cxp [ -+D] 
= (21r)-~/’ exp 

[ 
-~DPD- fnhc 1 , 

where N = N,N,k is the total number of data points, C is the N x N correlation matrix, 

and D is a N-component vector containing the data. We are interested in small off-diagonal 

elements in the noise contribution to the correlation matrix; it is useful to decompose the 
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correlation matrix into two pieces, C = Cs + Cl, where Cl is a small perturbation. To 

first-order in Cl the likelihood function is given by 

C wC0exp iTr(CclCl) 1 ho (274-N/2 

=&iq 
exp [-iDC;‘D] (2) 

where Co is the likelihood function in the absence of the perturbation. The actual value of 

the likelihood function is not significant, but rather its relative value for different potential 

theories. Here we parametrize theories simply by the variance they predict in a given 

experiment, 4th. Then L is a function of ath. A maximum in the likelihood function at 

a non-zero value of Qth marks a detection; the significance of a detection is given roughly 

by the ratio of the value of the likelihood function at its maximum to its value at no 

theoretical signal. We therefore consider the likelihood ratio: 

R(uth) f 
L( cth) 

L(u0.t = 0) ’ 

In this Letter we show analytically how the likelihood ratio changes as small off- 

diagonal correlations are turned on [i.e. as Cl becomes non-zero]. The conclusion is 

that even small ofi-diagonal correlatiorw can lead to huge changes in the likelihood ratio, 

and therefore in the significance of a detection. This analytical work, in Sections II and 

III, is useful but perhaps not completely convincing, as it involves certain simplifying 

assumptions. In Section IV we present the likelihood ratio for the Saskatoon experiment 

(Wollack et al. 1993), the only measurement of which we are currently aware that reports 

off-diagonal correlations. The difference between including such correlations in the analysis 

(as the group properly did) and neglecting them is shown to be dramatic. The Saskatoon 

experiment, a ground-based apparatus which uses a single HEMT amplifier for each three 

frequency channels, has noise correlations larger than many other current experiments, 

but even for experiments with substantiahy smaller correlations the difference can still be 

very important. 
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2. Two Channel Experiment 

In this section we illustrate the importance of off-diagonal correlations with a simple 

example. Consider an experiment which measures the temperature anisotropies in two 

frequency channels at one point on the sky. To analyze such an experiment we need 

three pieces of information: (i) the data, D, which in this case consists of two numbers, 

the observed temperature anisotropy in each channel; (ii) the theoretical prediction for 

the expected rms anisotropy, ath; and (iii) the expected rms of the noise, Us. With two 

frequency channels, the latter two quantities become 2 x 2 matrices. The correlation matrix 

is the sum of these two matrices: 

. 
The theoretical rms bth 2 appears in every element, because the expected rms due to the 

cosmic signal is the s,ame in every channel: if channel 1 measures a given dl, channel 

2 is predicted to find, the same v+lue of d2 in the absence of noise. The theoretically 

expected signal in each channel is therefore correlated. Any experiment will have diagonal 

contributions to the noise; for simplicity we assume the same noise rms in each frequency 

channel. Additional off-diagonal noise components arise whenever the noise sources in 

d.Xerent frequency channels are correlated. We parametrize the off-diagonal components 

by the small parameter E and write 0 et7: [ 1 
. 

Cl = cu2 0 * 
II 

Correlated noise will most likely arise from the atmosphere or from an experiment’s elec- 

tronics. 

We can evaluate the likelihood function in Eq.’ (2) by noting that 

ai -I- u& -4 

-“:h I uf +a& - 

Then writing the two measurements as D z 

in 45 is 

CzCsexp c [( 
4 4 u:h - 
uz + 0; + 24:h 

(6) 

(dl, da), the likelihood function to first order 

0th + u&u: (4 + d2)2 
- (6% + 2ug a% )I 

J$ = 
1 

2m.7, JIuiG 
e,[-(~u~,,l,[(d1~d2)2u~~2u~h]. (7) 
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A straightforward calculation shows that Cc peaks at 

if;)& = ;(dl + dz)’ - 5 (8) 
. 

if this quantity is greater than zero. Then substituting this value into Eq. (3) gives the 

simple result 

R(~fh) = %(&) exp( -GJUh)* (9) 

where Rc is the likelihood ratio when noise is not correlated (E = 0). As long as E is positive, 

meaning the noise in different channels is positively correlated, the likelihood ratio at 5fh is 

lowered by including correlation. Intuitively, correlations in the noise signal can mock those 

from a cosmic signal; thus if the noise is correlated, we expect the statistical significance of 

detections or upper limits to be weakened. Even for this simplistic one-patch, two-channel 

model, the effect of noise correlations can be non-negligible in estimating the significance 

of a detection. For example, if the predicted signal is twice the noise level (Q& = 4ui), 

presently a representative signal-to-noise ratio, and if e N 0.5 as it is in the Saskatoon 

experiment, then including the correlation decreases the significance of a detection by 

almost a factor of ten. We will now show that the situation gets worse with multiple 

channels and patches. 

3. ’ Generalization 

It is straightforward to generalize the above discussion to allow for many frequency 

and/or polarization channels and many spatial patches. For N, channels, Cc and Cr 

become N, x N, matrices: 

u:h + uz 
co = 

I - 

ug . . . 4h 
4ll u& +uz . . . 4b . . . -. . . . . . 
4 CT& . . . - 1 u:h + a; 

Cl = 

0 euz . . . euz 
eu; 0 . . . EUi 
. * . . . . . . * . * . 

eug euz . . . 0 
4 

I . 
(10) 

(11) 



Eqs. (10) and (11) idealize an actual experiment in two ways: (i) the noise in all the 

channels is assumed equal, so the diagonal components of C’s are equal; (ii) each pair of 

channels has equal correlation, so the off-diagonal components of Cr are all the same. The 

simplest way to carry out the calculations leading to the likelihood ratio is to write in 

component form: (Cc’)ii = -(u&/u~)/(u~ + Nch$h) + Sij/uz and (Cr)ij = (1 - 6ij)eaf, 

where 6ij is the Kronecker delta, equal to one when i = j and zero otherwise. Then a 

straightforward calculation gives the generalizations of Eqs. (8) and (9) as 

2 

-2 
Qth = 

and 

R(&) = &,(&)~p N&h - l)+ - 
24 1 . 

(12) 

(13) 

Both of these expressions reduce to the two-channel result in Eq. (8) and (9). The effect 

of noise correlation is enhanced by the factor Nd(N=a - 1)/2. 

A further generalization to many different patches on the sky can be approximated 

by a block diagonal correlation matrix: 

c* 0 I.. 0 
0 co . . . 0 

co= . . . . 
i I 

. . . * : 
;, i . . . co 

(14) 

and 

Here Cs and Cr are the Nd x Nch matrices given in Eqs. (10) and (11); each is repeated 

NP times to compose the N x N matrices Cs and Cr. For the noise correlation matrix Cr 

this block diagonal form is probably a good approximation, as noise in different patches is 

unlikely to be correlated. However taking Cc to be block diagonal is only an approximation, 

since the signal is likely to be correlated from patch to patch unless the patches are very far 

removed from each other. This approximation does not qualitatively affect our arguments. 
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The corresponding forms of Eqs. (8) and (9) now become 

‘$h 

and 

R(?ifh) = %&)(t?fh)exp -N Nch(Nch - l)+ 
P 1 2u; - 

(16) 

Eqs. (16) and (17) are our final analytic results. For a typical medium angle experiment 

today, Np TZI 20 and Nch N 3 - 4. Even with a low signal to noise ratio of order one, 

the argument of the exponential is then of order 100~. If c is of order 0.1, then the 

significance of a detection decreases by a factor of order ei” N 10’ when one accounts for 

the noise correlations. In general, for low signal-to-noise ratios, we expect correlations to 

be important if 

45 & 
1 

NpNch(Nch - 1); 

as the signal-to-noise ratio increases, the effect of correlations on the likelihood ratio be- 

comes stronger. 

4. Saskatoon Experiment 

In deriving the analytic result in Eq. (17), we made three assumptions: (1) The noise 

in each channel and patch was assumed to have the same variance; (2) The noise was 

assumed to be correlated in the same way between any pair of channels; (3) The signal 

was assumed to be uncorrelated from one spatial patch to another. In this section we 

analyze the Saskatoon experiment without making any of these assumptions. The reported 

error bars (the diagonal variance of the noise) and the reported off-diagonal correlations 

replace the first two assumptions. We perform the analysis in the context of a standard 

cold dark matter (CDM) model with a Harrison-Zel’dovich-Peebles initial spectrum, which 

determines the correlations between patches. 

The Saskatoon experiment takes measurements at six different channels for each patch: 

three frequency channels and two polarization channels. We consider the s-called “East” 

data set, which consists of measurements in 21 separate patches (the “West” data set gives 
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very similar answers). The theory gives the predicted variance not only in a given patch, 

but also the correlations between different patches. Specifically, 

tdadb) = z ~c$h,ab (19) 

where a,b label different patches; Cl is the prediction of the theory for the Zth mulitple 

moment; and Wr,cr&, is the window function of the experiment which depends on the chop- 

ping strategy, beam width, and spatial separation of patches a and b. For comparison, 

we previously assumed (d,db) = 6,&. CDM has only one free parameter, so Cl/C2 is 

fixed for all I > 2. Figure 1 shows the likelihood ratio R for the Saskatoon East data as a 

function of Qrm, = dw. 

The two curves in Figure 1 correspond to the likelihood ratio with and without off- 

diagonal noise correlatjons. The difference is stunning. A detection which would have been 

extremely clean [R(@2) m lo”] b ecomes much less certain [R(&) N 301 once correlations . 

are accounted for. (Note that Eq. (17) overestimates the effects of noise correlations in 

this Ca.Se: ‘&/‘,t = .68 and E -l/3, so that the argument of the exponential is m 70. This 

is because the off-diagonal elements in Cr were chosen to be equal in the simple model 

leading up to Eq. (17) , whereas in any real experiment, certain channels will be more 

strongly correlated than others.) We emphasize that the observers did include this effect in 

their analysis; we use this experiment as an illustration because it is the only one of which 

we are aware that has reported noise correlations. We hope the arguments presented here 

will prompt other groups to examine and report correlations in their experiments. 

We are especially grateful to Lyman Page and Stephan Meyer for their patient ex- 

planation of the Saskatoon experiment, and to them and Michael Turner for other useful 

discussions. This work was supported in part by the DOE (at Chicago and Fermilab) and 

by NASA through grant No. NAGW-2381 (at Fermilab). AK is supported in part by the 

NASA Graduate Student Researchers Program. 
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Figure Captions 

Figure 1. The Likelihood Ratio vs. Qrm, for the East data of the Saskatoon experiment 

with and without noise correlations. Qrm, is related to C2 via Qz,, = 5&/4?r. 
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